Comparative Study
Journal Article
Research Support, U.S. Gov't, Non-P.H.S.
Add like
Add dislike
Add to saved papers

Activation and Desensitization of Peripheral Muscle and Neuronal Nicotinic Acetylcholine Receptors by Selected, Naturally-Occurring Pyridine Alkaloids.

Toxins 2016 July 5
Teratogenic alkaloids can cause developmental defects due to the inhibition of fetal movement that results from desensitization of fetal muscle-type nicotinic acetylcholine receptors (nAChRs). We investigated the ability of two known teratogens, the piperidinyl-pyridine anabasine and its 1,2-dehydropiperidinyl analog anabaseine, to activate and desensitize peripheral nAChRs expressed in TE-671 and SH-SY5Y cells. Activation-concentration response curves for each alkaloid were obtained in the same multi-well plate. To measure rapid desensitization, cells were first exposed to five potentially-desensitizing concentrations of each alkaloid in log10 molar increments from 10 nM to 100 µM and then to a fixed concentration of acetylcholine (ACh), which alone produces near-maximal activation. The fifty percent desensitization concentration (DC50) was calculated from the alkaloid concentration-ACh response curve. Agonist fast desensitization potency was predicted by the agonist potency measured in the initial response. Anabaseine was a more potent desensitizer than anabasine. Relative to anabaseine, nicotine was more potent to autonomic nAChRs, but less potent to the fetal neuromuscular nAChRs. Our experiments have demonstrated that anabaseine is more effective at desensitizing fetal muscle-type nAChRs than anabasine or nicotine and, thus, it is predicted to be more teratogenic.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app