JOURNAL ARTICLE
RESEARCH SUPPORT, U.S. GOV'T, NON-P.H.S.
Add like
Add dislike
Add to saved papers

Wavelength-specific forward scattering of light by Bragg-reflective iridocytes in giant clams.

A surprising recent discovery revealed that the brightly reflective cells ('iridocytes') in the epithelia of giant clams actually send the majority of incident photons 'forward' into the tissue. While the intracellular Bragg reflectors in these cells are responsible for their colourful back reflection, Mie scattering produces the forward scattering, thus illuminating a dense population of endosymbiotic, photosynthetic microalgae. We now present a detailed micro-spectrophotometric characterization of the Bragg stacks in the iridocytes in live tissue to obtain the refractive index of the high-index layers (1.39 to 1.58, average 1.44 ± 0.04), the thicknesses of the high- and low-index layers (50-150 nm), and the numbers of pairs of layers (2-11) that participate in the observed spectral reflection. Based on these measurements, we performed electromagnetic simulations to better understand the optical behaviour of the iridocytes. The results open a deeper understanding of the optical behaviour of these cells, with the counterintuitive discovery that specific combinations of iridocyte diameter and Bragg-lamellar spacing can produce back reflection of the same colour that is also scattered forward, in preference to other wavelengths that are scattered at higher angles. We find for all values of size and wavelength investigated that more than 90% of the incident energy is carried by the photons that are scattered in the forward direction; while this forward scattering from each iridocyte shows very narrow angular dispersion (ca ±6°), the multiplicative scattering from a layer of ca 20 iridocytes broadens this dispersion to a cone of approximately ±90°. This understanding of the complex biophotonic dynamics enhances our comprehension of the physiologically, ecologically and evolutionarily significant light environment inside the giant clam, which is diffuse and nearly white at small tissue depths and downwelling, relatively monochromatic, and can be the same colour as the back-reflected light at greater depths in the tissue. Originally thought to be unique, cells of similar structure and photonic activity are now recognized in other species, where they serve other functions. The behaviour of the iridocytes opens possible new considerations for conservation and management of the valuable giant clam resource and new avenues for biologically inspired photonic applications.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app