Add like
Add dislike
Add to saved papers

Moving toward a higher efficiency of microcell-mediated chromosome transfer.

Microcell-mediated chromosome transfer (MMCT) technology enables individual mammalian chromosomes, megabase-sized chromosome fragments, or mammalian artificial chromosomes that include human artificial chromosomes (HACs) and mouse artificial chromosomes (MACs) to be transferred from donor to recipient cells. In the past few decades, MMCT has been applied to various studies, including mapping the genes, analysis of chromosome status such as aneuploidy and epigenetics. Recently, MMCT was applied to transfer MACs/HACs carrying entire chromosomal copies of genes for genes function studies and has potential for regenerative medicine. However, a safe and efficient MMCT technique remains an important challenge. The original MMCT protocol includes treatment of donor cells by Colcemid to induce micronucleation, where each chromosome becomes surrounded with a nuclear membrane, followed by disarrangement of the actin cytoskeleton using Cytochalasin B to help induce microcells formation. In this study, we modified the protocol and demonstrated that replacing Colcemid and Cytochalasin B with TN-16 + Griseofulvin and Latrunculin B in combination with a Collage/Laminin surface coating increases the efficiency of HAC transfer to recipient cells by almost sixfold and is possibly less damaging to HAC than the standard MMCT method. We tested the improved MMCT protocol on four recipient cell lines, including human mesenchymal stem cells and mouse embryonic stem cells that could facilitate the cell engineering by HACs.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app