Add like
Add dislike
Add to saved papers

MicroRNA-190 regulates FOXP2 genes in human gastric cancer.

OBJECTIVE: To investigate how microRNA-190 (miR-190) regulates FOXP2 genes in gastric cancer (GC) cell line SGC7901.

METHODS: We identified that miR-190 could target FOXP2 genes by using dual luciferase enzyme assay. Precursor fragment transfection of miR-190 was performed with GC cell line SGC7901 and human gastric mucosal cell line GES-1. miR-190 expression was detected by reverse transcription-polymerase chain reaction (RT-PCR) and FOXP2 protein expression was measured by Western blotting.

RESULTS: FOXP2-3'-untranslated region (UTR) in miR-190 transfection group was significantly decreased as compared with other groups. There were no significant differences in fluorescence signals of FOXP2mut-3'-UTR in each group. Therefore, it was assumed that miR-190 can target FOXP2 genes. Through RT-PCR verification, it was observed that the expression level of miR-190 was significantly higher in GC cell line SGC7901 than in human gastric mucosa cell line GES-1 after transfection with miR-190 mimics. The expression level of miR-190 was significantly higher in GES-1 cells than in SGC7901 cells after transfection with miR-190 inhibitors. Western blotting results showed the expression level of FOXP2 was significantly lower in GC cell line SGC7901 than in GES-1 cells. Compared with blank, mimics control, and inhibitors control groups, the miR-190 mimics group showed significantly enhanced proliferation, migration, and invasion abilities, while miR-190 inhibitors group showed decreased abilities toward proliferation, migration, and invasion (P<0.05). The transcription level of miR-190 and the expression level of FOXP2 in tumor tissues and adjacent normal tissues in GC patients were verified to be consistent with those of cell line experiments.

CONCLUSION: Upregulation of miR-190 can lead to downregulation of FOXP2 protein expression. miR-190 may serve as a potential target for GC diagnosis.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app