Add like
Add dislike
Add to saved papers

Spreading depolarization triggered by elevated potassium is weak or absent in the rodent lower brain.

We examined in live coronal slices from rat and mouse which brain regions generate potassium-triggered spreading depolarization (SDKt ). This technique simulates cortical spreading depression, which underlies migraine aura in the intact brain. An SDKt episode was evoked by increasing bath [K+ ]o and recorded as a propagating front of elevated light transmittance representing transient neuronal swelling in gray matter of neocortex, hippocampus, striatum, and thalamus. In contrast, SDKt was not imaged in hypothalamic nuclei or brainstem with exception of those nuclei near the dorsal brainstem surface. In rat slices, single neurons were whole-cell current clamped during SDKt . "Higher" neurons depolarized to near zero millivolts indicating SDKt generation. In contrast, seven types of neurons in hypothalamus and brainstem only slowly depolarized without generating SDKt , supporting our imaging findings. Therefore, SDKt is not a default of CNS neurons but rather displays a region-specific susceptibility, similar to anoxic depolarization, which we have proposed is correlated with a region's vulnerability to traumatic brain injury. In the higher brain, SDKt may be a vestigial spreading depolarization that originally evolved to shut down and vasoconstrict gray matter regions more exposed to impact and contusion.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

Managing Alcohol Withdrawal Syndrome.Annals of Emergency Medicine 2024 March 26

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app