CONTROLLED CLINICAL TRIAL
JOURNAL ARTICLE
Add like
Add dislike
Add to saved papers

Delayed gadolinium-enhanced MRI of cartilage (dGEMRIC) and T 2 mapping at 3T MRI of the wrist: Feasibility and clinical application.

PURPOSE: To assess the feasibility of delayed gadolinium-enhanced magnetic resonance imaging (MRI) of cartilage (dGEMRIC) and T2 mapping for biochemical imaging of the wrist at 3T.

MATERIALS AND METHODS: Seventeen patients with wrist pain (mean age, 41.4 ± 13.1 years) including a subgroup with chondromalacia (n = 11) and 15 healthy volunteers (26.0 ± 2.2 years) underwent dGEMRIC and T2 mapping at 3T. For dGEMRIC, the optimum time window after contrast-injection (gadopentetate dimeglumine) was defined as the plateau of the T1 curve of repeated measurements 15-90 minutes postinjection and assessed in all volunteers. Reference values of healthy-appearing cartilage from all individuals and values in areas of chondromalacia were assessed using region-of-interest analyses. Receiver-operating-characteristic analyses were applied to assess discriminatory ability between damaged and normal cartilage.

RESULTS: The optimum time window was 45-90 minutes, and the 60-minute timepoint was subsequently used. In chondromalacia, dGEMRIC values were lower (551 ± 84 msec, P < 0.001), and T2 values higher (63.9 ± 17.7, P = 0.001) compared to healthy-appearing cartilage of the same patient. Areas under the curve did not significantly differ between dGEMRIC (0.91) and T2 mapping (0.99; P = 0.17). In healthy-appearing cartilage of volunteers and patients, mean dGEMRIC values were 731.3 ± 47.1 msec and 674.6 ± 72.1 msec (P = 0.01), and mean T2 values were 36.5 ± 5 msec and 41.1 ± 3.2 msec (P = 0.009), respectively.

CONCLUSION: At 3T, dGEMRIC and T2 mapping are feasible for biochemical cartilage imaging of the wrist. Both techniques allow separation and biochemical assessment of thin opposing cartilage surfaces and can distinguish between healthy and damaged cartilage.

LEVEL OF EVIDENCE: 3 J. Magn. Reson. Imaging 2017;45:381-389.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app