Add like
Add dislike
Add to saved papers

Statistical detection of nanoparticles in cells by darkfield microscopy.

In the fields of nanomedicine, biophotonics and radiation therapy, nanoparticle (NP) detection in cell models often represents a fundamental step for many in vivo studies. One common question is whether NPs have or have not interacted with cells. In this context, we propose an imaging based technique to detect the presence of NPs in eukaryotic cells. Darkfield images of cell cultures at low magnification (10×) are acquired in different spectral ranges and recombined so as to enhance the contrast due to the presence of NPs. Image analysis is applied to extract cell-based parameters (i.e. mean intensity), which are further analyzed by statistical tests (Student's t-test, permutation test) in order to obtain a robust detection method. By means of a statistical sample size analysis, the sensitivity of the whole methodology is quantified in terms of the minimum cell number that is needed to identify the presence of NPs. The method is presented in the case of HeLa cells incubated with gold nanorods labeled with anti-CA125 antibodies, which exploits the overexpression of CA125 in ovarian cancers. Control cases are considered as well, including PEG-coated NPs and HeLa cells without NPs.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app