Journal Article
Research Support, Non-U.S. Gov't
Add like
Add dislike
Add to saved papers

Cationic lipid-nanoceria hybrids, a novel nonviral vector-mediated gene delivery into mammalian cells: investigation of the cellular uptake mechanism.

Scientific Reports 2016 July 7
Gene therapy is a promising technique for the treatment of various diseases. The development of minimally toxic and highly efficient non-viral gene delivery vectors is the most challenging undertaking in the field of gene therapy. Here, we developed dimethyldioctadecylammonium bromide (DODAB)-nanoceria (CeO2) hybrids as a new class of non-viral gene delivery vectors. These DODAB-modified CeO2 nanoparticles (CeO2/DODAB) could effectively compact the pDNA, allowing for highly efficient gene transfection into the selected cell lines. The CeO2/DODAB nanovectors were also found to be non-toxic and did not induce ROS formation as well as any stress responsive and pro-survival signaling pathways. The overall vector performance of CeO2/DODAB nanohybrids was comparable with lipofectamine and DOTAP, and higher than calcium phosphate and DEAE-dextran for transfecting small plasmids. The increased cellular uptake of the nanovector/DNA complexes through clathrin- and caveolae-mediated endocytosis and subsequent release from the endosomes further support the increased gene transfection efficiency of the CeO2/DODAB vectors. Besides, CeO2/DODAB nanovectors could transfect genes in vivo without any sign of toxicity. Taken together, this new nano-vector has the potential to be used for gene delivery in biomedical applications.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app