Add like
Add dislike
Add to saved papers

How fast is optically induced electron transfer in organic mixed valence systems?

The rate of thermally induced electron transfer in organic mixed valence compounds has thoroughly been investigated by e.g. temperature dependent ESR spectroscopy. However, almost nothing is known about the dynamics of optically induced electron transfer processes in such systems. Therefore, we investigated these processes in mixed valence compounds based on triphenylamine redox centres bridged by conjugated spacers by NIR transient absorption spectroscopy with fs-time resolution. These experiments revealed an internal conversion (IC) process to be on the order of 50-200 fs which is equivalent to the back electron transfer after optical excitation into the intervalence charge transfer band. This IC is followed by ultrafast cooling to the ground state within 1 ps. Thus, in the systems investigated optically induced electron transfer is about 3-4 orders of magnitude faster than thermally induced ET.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app