Add like
Add dislike
Add to saved papers

ALS1 and ALS3 gene expression and biofilm formation in Candida albicans isolated from vulvovaginal candidiasis.

BACKGROUND: A cluster of genes are involved in the pathogenesis and adhesion of Candida albicans to mucosa and epithelial cells in the vagina, the important of which is agglutinin-like sequence (ALS) genes. As well as vaginitis is a significant health problem among women, the antifungal resistance of Candida species is continually increasing. This cross-sectional study investigates the expression of ALS1 and ALS3 genes and biofilm formation in C. albicans isolate isolated from vaginitis.

MATERIALS AND METHODS: Fifty-three recognized isolates of C. albicans were collected from women with recurrent vulvovaginal candidiasis in Iran, cultured on sabouraud dextrose agar, and then examined for gene expression. Total messenger RNA (mRNA) extracted from C. albicans isolates and complementary DNA synthesized using reverse transcriptase enzyme. Reverse transcription-polymerase chain reaction (RT-PCR) using specific primer was used to evaluate the expression of ALS1 and ALS3 through housekeeping (ACT1) genes. 3-(4,5-dimethyl-2-thiazyl)-2,5-diphenyl-2H-tetrazolium bromide assay was performed to assess adherence capacity and biofilm formation in the isolated.

RESULTS: Forty isolates (75.8%) expressed ALS1 and 41 isolates (77.7%) expressed ALS3 gene. Moreover, 39 isolates (74%) were positive for both ALS1 and ALS3 mRNA by the RT-PCR. Adherence capability in isolates with ALS1 or ALS3 genes expression was greater than the control group (with any gene expression), besides, it was significantly for the most in the isolates that expressed both ALS1 and ALS3 genes simultaneously.

CONCLUSION: The results attained indicated that there is an association between the expression of ALS1 and ALS3 genes and fluconazole resistance in C. albicans. A considerable percent of the isolates expressing the ALS1 and ALS3 genes may have contributed to their adherence to vagina and biofilm formation.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app