JOURNAL ARTICLE
RESEARCH SUPPORT, NON-U.S. GOV'T
Add like
Add dislike
Add to saved papers

Genetic variants of nuclear factor erythroid-derived 2-like 2 associated with the complications in Han descents with type 2 diabetes mellitus of Northeast China.

The transcription factor nuclear factor erythroid 2-like 2 (NFE2L2) is essential for preventing type 2 diabetes mellitus (T2DM)-induced complications in animal models. This case and control study assessed genetic variants of NFE2L2 for associations with T2DM and its complications in Han Chinese volunteers. T2DM patients with (n = 214) or without (n = 236) complications, or healthy controls (n = 359), were genotyped for six NFE2L2 single nucleotide polymorphisms (SNPs: rs2364723, rs13001694, rs10497511, rs1806649, rs1962142 and rs6726395) with TaqMan Pre-Designed SNP Genotyping and Sequence System. Serum levels of heme oxygenase-1 (HMOX1) were determined through enzyme-linked immunosorbent assay. Informative data were obtained for 341 cases and 266 controls. Between T2DM patients and controls, the genotypic and allelic frequencies and haplotypes of the SNPs were similar. However, there was a significant difference in genotypic and allelic frequencies of rs2364723, rs10497511, rs1962142 and rs6726395 between T2DM patients with and without complications, including peripheral neuropathy, nephropathy, retinopathy, foot ulcers and microangiopathy. Furthermore, HMOX1 levels were significantly higher in T2DM patients with complications than in controls. Multiple logistic regression analysis, however, showed that only rs2364723 significantly reduced levels of serum HMOX1 in T2DM patients for the GG genotype carriers compared with participants with CG+CC genotype. The data suggest that although NFE2L2 rs2364723, rs10497511, rs1962142 and rs6726395 were not associated with T2DM risk, they were significantly associated with complications of T2DM. In addition, only for rs2364723 higher serum HMOX1 levels were found in the T2DM patients with CG+CC than those with GG genotype.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app