JOURNAL ARTICLE
RESEARCH SUPPORT, NON-U.S. GOV'T
Add like
Add dislike
Add to saved papers

Highly specific and potently activating Vγ9Vδ2-T cell specific nanobodies for diagnostic and therapeutic applications.

Vγ9Vδ2-T cells constitute the predominant subset of γδ-T cells in human peripheral blood and have been shown to play an important role in antimicrobial and antitumor immune responses. Several efforts have been initiated to exploit these cells for cancer immunotherapy, e.g. by using phosphoantigens, adoptive cell transfer, and by a bispecific monoclonal antibody based approach. Here, we report the generation of a novel set of Vγ9Vδ2-T cell specific VHH (or nanobody). VHH have several advantages compared to conventional antibodies related to their small size, stability, ease of generating multispecific molecules and low immunogenicity. With high specificity and affinity, the anti-Vγ9Vδ2-T cell receptor VHHs are shown to be useful for FACS, MACS and immunocytochemistry. In addition, some VHH were found to specifically activate Vγ9Vδ2-T cells. Besides being of possible immunotherapeutic value, these single domain antibodies will be of great value in the further study of this important immune effector cell subset.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app