Add like
Add dislike
Add to saved papers

The use of propidium monoazide in conjunction with qPCR and Illumina sequencing to identify and quantify live yeasts and bacteria.

Culture-independent methods of microbial identification have been developed, which allow for DNA extraction directly from environmental samples without subjecting microbes to growth on nutrient media. These methods often involve next generation DNA sequencing (NGS) for identifying microbes and qPCR for quantifying them. Despite the benefits of extracting all DNA from the sample, results may be compromised by amplifying DNA from dead cells. To address this short-coming, the use of propidium monoazide (PMA) has been used to deactivate DNA in non-viable cells. Nevertheless, its optimization has not been fully explored under a variety of conditions. In this study, we optimized the PMA method for both yeasts and bacteria. Specifically, we explored the effect different PMA concentrations and different cell densities had on DNA amplification (as part of next generation DNA sequencing) from both dead and viable bacterial and yeast cells. We found PMA was effective in eliminating DNA that was associated with dead yeast and bacterial cells for all cell concentrations. Nevertheless, DNA (extracted from viable yeast and bacterial cells) amplified most abundantly when PMA concentration was at 6μM and when yeast densities ranged between 10(6) to 10(7)CFU/mL and bacterial densities were approximately 10(8)CFU/mL.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

Managing Alcohol Withdrawal Syndrome.Annals of Emergency Medicine 2024 March 26

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app