Add like
Add dislike
Add to saved papers

Star-like superalkali cations featuring planar pentacoordinate carbon.

Superalkali cations, known to possess low vertical electron affinities (VEAs), high vertical detachment energies, and large highest occupied molecular orbital (HOMO)-lowest unoccupied molecular orbital (LUMO) energy gaps, are intriguing chemical species. Thermodynamically, such species need to be the global minima in order to serve as the promising targets for experimental realization. In this work, we propose the strategies of polyhalogenation and polyalkalination for designing the superalkali cations. By applying these strategies, the local-minimum planar pentacoordinate carbon (ppC) cluster CBe5 can be modified to form a series of star-like superalkali ppC or quasi-ppC CBe5X5 (+) (X = F, Cl, Br, Li, Na, K) cations containing a CBe5 moiety. Polyhalogenation and polyalkalination on the CBe5 unit may help eliminate the high reactivity of bare CBe5 molecule by covering the reactive Be atoms with noble halogen anions and alkali cations. Computational exploration of the potential energy surfaces reveals that the star-like ppC or quasi-ppC CBe5X5 (+) (X = F, Cl, Br, Li, Na, K) clusters are the true global minima of the systems. The predicted VEAs for CBe5X5 (+) range from 3.01 to 3.71 eV for X = F, Cl, Br and 2.12-2.51 eV for X = Li, Na, K, being below the lower bound of the atomic ionization potential of 3.89 eV in the periodic table. Large HOMO-LUMO energy gaps are also revealed for the species: 10.76-11.07 eV for X = F, Cl, Br and 4.99-6.91 eV for X = Li, Na, K. These designer clusters represent the first series of superalkali cations with a ppC center. Bonding analyses show five Be-X-Be three-center two-electron (3c-2e) σ bonds for the peripheral bonding, whereas the central C atom is associated with one 6c-2e π bond and three 6c-2e σ bonds, rendering (π and σ) double aromaticity. Born-Oppenheimer molecular dynamics simulations indicate that the CBe5 motif is robust in the clusters. As planar hypercoordination carbon species are often thermodynamically unstable and highly reactive, the superalkali cation characters of these ppC species should be highlighted, which may be suitable for experimental realization.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app