JOURNAL ARTICLE
RESEARCH SUPPORT, N.I.H., EXTRAMURAL
RESEARCH SUPPORT, NON-U.S. GOV'T
Add like
Add dislike
Add to saved papers

A novel mouse model of the aged brain: Over-expression of the L-type voltage-gated calcium channel Ca V 1.3.

The aged population is growing rapidly, which has sparked tremendous interest in elucidating mechanisms of aging in both the body and the brain. Animal models have become an indispensable tool in biomedical science, but because of the cost and extended timeframe associated with aging animals to appropriate time points, studies that rely on using aged animals are often not feasible. Somewhat surprisingly, there are relatively few animal models that have been specifically engineered to mimic physiological changes known to occur during "normal" aging. Developing transgenic animal models that faithfully mimic key aspects of aging would likely be of great utility in studying both age-related deficits in the absence of overt pathology as well as an adjunct for transgenic models of diseases where aging is a primary risk factor. In particular, there are several alterations in the aged brain that are amenable to being modeled genetically. We have focused on one key aspect that has been repeatedly demonstrated in aged animals - an increase in the L-type voltage-gated calcium channel CaV 1.3. Here we present a novel transgenic mouse line in which expression of CaV 1.3 is increased by approximately 50% in the forebrain of young mice. These mice do not display any overt physical or non-cognitive deficits, exhibiting normal exploratory behavior, motor function, and affective-like responses, suggesting that these mice can be successfully deployed to assess the impact of an "aged brain" in a variety of conditions.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app