Journal Article
Research Support, N.I.H., Extramural
Research Support, Non-U.S. Gov't
Research Support, U.S. Gov't, Non-P.H.S.
Add like
Add dislike
Add to saved papers

Combinational effects of muscarinic receptor inhibition and β3-adrenoceptor stimulation on neurogenic bladder dysfunction in rats with spinal cord injury.

AIMS: To investigate the effects of combined therapy with an anticholinergic agent and a β3-adrenoceptor agonist on bladder dysfunction and proliferation-related molecule expression in rats with spinal cord injury (SCI).

METHODS: The spinal cord was transected at the level of T8-9 in female Sprague-Dawley rats, which were divided into four groups; A: Vehicle, B: 10 mg/kg/day of oxybutynin, C: 10 mg/kg/day of mirabegron, and D: combined administration of oxybutynin and mirabegron. Drugs were administered by oral gavage from 2 to 4 weeks after spinal cord transection. We evaluated urodynamic parameters and bladder tissue remodeling factors.

RESULTS: Non-voiding contractions (NVCs) during the storage phase of cystometrograms tended to be decreased in all three treated groups with a significant reduction in group D versus A. Bladder compliance was improved, and intercontraction intervals, voided volume and bladder capacity were increased in group D. In all three treated groups (B-D), the expression of HIF1-α and TGF-β1 was decreased compared to group A. The expression of collagen-III and bFGF was decreased in groups B and D. The total bladder elastin level was increased in group D.

CONCLUSIONS: The combination therapy of an anticholinergic agent and a β3-adrenoceptor agonist elevated the bladder elastin level, reduced NVCs, and increased bladder compliance more effectively than the monotherapy in SCI rats. Thus, the combination therapy could be effective for the treatment of neurogenic bladder dysfunction including bladder remodeling. Neurourol. Urodynam. 36:1039-1045, 2017. © 2016 Wiley Periodicals, Inc.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app