Journal Article
Research Support, N.I.H., Extramural
Research Support, Non-U.S. Gov't
Add like
Add dislike
Add to saved papers

The apoptotic members CD95, BclxL, and Bcl-2 cooperate to promote cell migration by inducing Ca(2+) flux from the endoplasmic reticulum to mitochondria.

Metalloprotease-processed CD95L (cl-CD95L) is a soluble cytokine that implements a PI3K/Ca(2+) signaling pathway in triple-negative breast cancer (TNBC) cells. Accordingly, high levels of cl-CD95L in TNBC women correlate with poor prognosis, and administration of this ligand in an orthotopic xenograft mouse model accelerates the metastatic dissemination of TNBC cells. The molecular mechanism underlying CD95-mediated cell migration remains unknown. Here, we present genetic and pharmacologic evidence that the anti-apoptotic molecules BclxL and Bcl-2 and the pro-apoptotic factors BAD and BID cooperate to promote migration of TNBC cells stimulated with cl-CD95L. BclxL was distributed in both endoplasmic reticulum (ER) and mitochondrion membranes. The mitochondrion-localized isoform promoted cell migration by interacting with voltage-dependent anion channel 1 to orchestrate Ca(2+) transfer from the ER to mitochondria in a BH3-dependent manner. Mitochondrial Ca(2+) uniporter contributed to this flux, which favored ATP production and cell migration. In conclusion, this study reveals a novel molecular mechanism controlled by BclxL to promote cancer cell migration and supports the use of BH3 mimetics as therapeutic options not only to kill tumor cells but also to prevent metastatic dissemination in TNBCs.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app