Journal Article
Research Support, N.I.H., Extramural
Research Support, Non-U.S. Gov't
Add like
Add dislike
Add to saved papers

Efficient Generation of Hypothalamic Neurons from Human Pluripotent Stem Cells.

The hypothalamus comprises neuronal clusters that are essential for body weight regulation and other physiological functions. Insights into the complex cellular physiology of this region of the brain are critical to understanding the pathogenesis of obesity, but human hypothalamic cells are largely inaccessible for direct study. Here we describe a technique for generation of arcuate-like hypothalamic neurons from human pluripotent stem (hPS) cells. Early activation of SHH signaling and inhibition of BMP and TGFβ signaling, followed by timed inhibition of NOTCH, can efficiently differentiate hPS cells into NKX2.1+ hypothalamic progenitors. Subsequent incubation with BDNF induces the differentiation and maturation of pro-opiomelanocortin and neuropeptide Y neurons, which are major cell types in the arcuate hypothalamus. These neurons have molecular and cellular characteristics consistent with arcuate neurons. © 2016 by John Wiley & Sons, Inc.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app