Add like
Add dislike
Add to saved papers

Imidazolium-Based Porous Organic Polymers: Anion Exchange-Driven Capture and Luminescent Probe of Cr2O7(2.).

A series of imidazolium-based porous organic polymers (POP-Ims) was synthesized through Yamamoto reaction of 1,3-bis(4-bromophenyl)imidazolium bromide and tetrakis(4-bromophenyl)ethylene. Porosities and hydrophilicity of such polymers may be well tuned by varying the ratios of two monomers. POP-Im with the highest density of imidazolium moiety (POP-Im1) exhibits the best dispersity in water and the highest efficiency in removing Cr2O7(2-). The capture capacity of 171.99 mg g(-1) and the removal efficiency of 87.9% were achieved using an equivalent amount of POP-Im1 within 5 min. However, no Cr2O7(2-) capture was observed using nonionic analogue despite its large surface area and abundant pores, suggesting that anion exchange is the driving force for the removal of Cr2O7(2-). POP-Im1 also displays excellent enrichment ability and remarkable selectivity in capturing Cr2O7(2-). Cr(VI) in acid electroplating wastewater can be removed completely using excess POP-Im1. In addition, POP-Im1 can serve as a luminescent probe for Cr2O7(2-) due to the incorporation of luminescent tetraphenylethene moiety.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app