Journal Article
Research Support, Non-U.S. Gov't
Add like
Add dislike
Add to saved papers

Escherichia coli Topoisomerase IV E Subunit and an Inhibitor Binding Mode Revealed by NMR Spectroscopy.

Bacterial topoisomerases are attractive antibacterial drug targets because of their importance in bacterial growth and low homology with other human topoisomerases. Structure-based drug design has been a proven approach of efficiently developing new antibiotics against these targets. Past studies have focused on developing lead compounds against the ATP binding pockets of both DNA gyrase and topoisomerase IV. A detailed understanding of the interactions between ligand and target in a solution state will provide valuable information for further developing drugs against topoisomerase IV targets. Here we describe a detailed characterization of a known potent inhibitor containing a 9H-pyrimido[4,5-b]indole scaffold against the N-terminal domain of the topoisomerase IV E subunit from Escherichia coli (eParE). Using a series of biophysical and biochemical experiments, it has been demonstrated that this inhibitor forms a tight complex with eParE. NMR studies revealed the exact protein residues responsible for inhibitor binding. Through comparative studies of two inhibitors of markedly varied potencies, it is hypothesized that gaining molecular interactions with residues in the α4 and residues close to the loop of β1-α2 and residues in the loop of β3-β4 might improve the inhibitor potency.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app