Add like
Add dislike
Add to saved papers

Molecular characterization of glycation-associated skin ageing: an alternative skin model to study in vitro antiglycation activity of topical cosmeceutical and pharmaceutical formulations.

BACKGROUND: Glycation is a nonenzymatic reaction that cross-links a sugar molecule and protein macromolecule to form advanced glycation products (AGEs) that are associated with various age-related disorders; thus glycation plays an important role in skin chronological ageing.

OBJECTIVES: To develop a novel in vitro skin glycation model as a screening tool for topical formulations with antiglycation properties and to further characterize, at the molecular level, the glycation stress-driven skin ageing mechanism.

METHODS: The glycation model was developed using human reconstituted full-thickness skin; the presence of Nε -(carboxymethyl) lysine (CML) was used as evidence of the degree of glycation. Topical application of emulsion containing a well-known antiglycation compound (aminoguanidine) was used to verify the sensitivity and robustness of the model. Cytokine immunoassay, quantitative real-time polymerase chain reaction and histological analysis were further implemented to characterize the molecular mechanisms of skin ageing in the skin glycation model.

RESULTS: Transcriptomic and cytokine profiling analyses in the skin glycation model demonstrated multiple biological changes, including extracellular matrix catabolism, skin barrier function impairment, oxidative stress and subsequently the inflammatory response. Darkness and yellowness of skin tone observed in the in vitro skin glycation model correlated well with the degree of glycation stress.

CONCLUSIONS: The newly developed skin glycation model in this study has provided a new technological dimension in screening antiglycation properties of topical pharmaceutical or cosmeceutical formulations. This study concomitantly provides insights into skin ageing mechanisms driven by glycation stress, which could be useful in formulating skin antiageing therapy in future studies.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app