Add like
Add dislike
Add to saved papers

Changes in phagocytosis and expression of microglial cells in craniocerebral injury mice models.

The objective of this study was to investigate the changes in phagocytic function and expression quantities of CD11b and tumor necrosis factor-α (TNF-α) among microglia cells of craniocerebral injury mice. Modified Feeney method was used to establish the craniocerebral injury mice models. Twenty-one male SPF mice were divided into a control group and a trauma group. The scalp was incised and a bone window was opened in the control group without cerebral injury. In the trauma group, the mice were sacrificed after the craniocerebral injury at 1, 3, 6, 12, 24 and 48 h to make frozen sections of cerebral tissues. The phagocytic rate of microglia cells was observed by using fluorescent microsphere. The changes in the expression quantities of CD11b and TNF-α were detected by enzyme-linked immuno sorbent assay (ELISA). The phagocytic ability of the microglia cells after the craniocerebral injury increased at 1 h after injury compared with that of the control group (P less than 0.01). The expression of surface antigen CD11b of the microglia cells and the expression of TNF-α increased at 1, 3, 6, 12, 24 and 48 h after the injury compared with those of the control group (P less than 0.01). The phagocytic ability of the microglia cells increased. The expressions of CD11b and TNF-α were also gradually enhanced in the acute phase after craniocerebral injury, and then gradually decreased to the normal level. The expressions of CD11b and TNF-α indicated a high consistency with the changing trend of the phagocytic ability, suggesting that the microglia cells may participate in the regulation of the inflammatory process of the central nervous system through absorbing apoptotic cells and increasing and secreting inflammatory and anti-inflammatory factors.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app