JOURNAL ARTICLE
RESEARCH SUPPORT, NON-U.S. GOV'T
Add like
Add dislike
Add to saved papers

Chemically driven negative linear compressibility in sodium amidoborane, Na(NH2BH3).

Scientific Reports 2016 June 31
Over the past few years we have been witnessing a surge of scientific interest to materials exhibiting a rare mechanical effect such as negative linear compressibility (NLC). Here we report on strong NLC found in an ionic molecular crystal of sodium amidoborane (NaAB) - easily-accessible, optically transparent material. In situ Raman measurements revealed abnormal elongation of B-N and N-H bonds of NaAB at pressure about 3 GPa. Ab initio calculations indicate the observed spectroscopic changes are due to an isostructural phase transition accompanied by a stepwise expansion of the crystal along c axis. Analysis of calculated charge density distribution and geometry of molecular species (NH2BH3) univocally points to a chemically driven mechanism of NLC - pressure-induced formation of hydrogen bonds. The new H-bond acts as a "pivot screw" coupling N-H covalent bonds of neighbor molecular species - a system resembling a two-lever "jack device" on a molecular scale. A mechanism based on formation of new bonds stands in apparent contrast to mechanisms so far reported in majority of NLC materials where no significant alteration of chemical bonding was observed. The finding therefore suggests a qualitatively new direction in exploration the field towards rational design of incompressible materials.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

Managing Alcohol Withdrawal Syndrome.Annals of Emergency Medicine 2024 March 26

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app