Add like
Add dislike
Add to saved papers

PD1 blockade enhances cytotoxicity of in vitro expanded natural killer cells towards myeloma cells.

Oncotarget 2016 July 27
Aiming for an adoptive natural killer (NK) cell therapy, we have developed a novel protocol to expand NK cells from peripheral blood. With this protocol using anti-human CD16 antibody and interleukin (IL)-2, NK (CD3-CD56+) cells could be expanded about 4000-fold with over 70% purity during a 21-day culture. The expanded NK (exNK) cells were shown to be highly cytotoxic to multiple myeloma (MM) cells (RPMI8226) at low NK-target cell ratios. Furthermore, NK cells expanded in the presence of a blocking antibody (exNK+PD1-blockage) against programmed cell death protein-1 (PD1), a key counteracting molecule for NK and T cell activity, demonstrated more potent cytolytic activity against the RPMI8226 than the exNK cells without PD1 blocking. In parallel, the exNK cells showed significantly higher expression of NK activation receptors NKG2D, NKp44 and NKp30. In a murine model of MM, transfusion of exNK cells, exNK+PD1-blockage, and exNK plus intratumor injection of anti-PD-L2 antibody (exNK+PD-L2 blockage) all significantly suppressed tumor growth and prolonged survival of the myeloma mice. Importantly, exNK+PD1-blockage presented more efficient therapeutic effects. Our results suggest that the NK cell expansion protocol with PD1 blockade presented in this study has considerable potential for the clinical application of allo- and auto-NK cell-based therapies against malignancies.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

Managing Alcohol Withdrawal Syndrome.Annals of Emergency Medicine 2024 March 26

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app