Journal Article
Research Support, Non-U.S. Gov't
Add like
Add dislike
Add to saved papers

Hyaluronan Upregulates Mitochondrial Biogenesis and Reduces Adenoside Triphosphate Production for Efficient Mitochondrial Function in Slow-Proliferating Human Mesenchymal Stem Cells.

Stem Cells 2016 October
Hyaluronan-coated surfaces preserve the proliferation and differentiation potential of mesenchymal stem cells by prolonging their G1-phase transit, which maintains cells in a slow-proliferative mode. Mitochondria are known to play a crucial role in stem cell self-renewal and differentiation. In this study, for the first time, the metabolic mechanism underlying the hyaluronan-regulated slow-proliferative maintenance of stem cells was investigated by evaluating mitochondrial functions. Human placenta-derived mesenchymal stem cells (PDMSCs) cultured on hyaluronan-coated surfaces at 0.5, 3.0, 5.0, and 30 µg/cm2 were found to have an average 58% higher mitochondrial mass and an increase in mitochondrial DNA copy number compared to noncoated tissue culture surfaces (control), as well as a threefold increase in the gene expression of the mitochondrial biogenesis-related gene PGC-1α. Increase in mitochondrial biogenesis led to a hyaluronan dose-dependent increase in mitochondrial membrane potential, ATP content, and oxygen consumption rate, with reactive oxygen species levels shown to be at least three times lower compared to the control. Although hyaluronan seemed to favor mitochondrial function, cell entry into a hyaluronan-regulated slow-proliferative mode led to a fivefold reduction in ATP production and coupling efficiency levels. Together, these results suggest that hyaluronan-coated surfaces influence the metabolic proliferative state of stem cells by upregulating mitochondrial biogenesis and function with controlled ATP production. This more efficiently meets the energy requirements of slow-proliferating PDMSCs. A clear understanding of the metabolic mechanism induced by hyaluronan in stem cells will allow future applications that may overcome the current limitations faced in stem cell culture. Stem Cells 2016;34:2512-2524.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app