JOURNAL ARTICLE
RESEARCH SUPPORT, N.I.H., EXTRAMURAL
Add like
Add dislike
Add to saved papers

NANOG Reverses the Myogenic Differentiation Potential of Senescent Stem Cells by Restoring ACTIN Filamentous Organization and SRF-Dependent Gene Expression.

Stem Cells 2017 January
Cellular senescence as a result of organismal aging or progeroid diseases leads to stem cell pool exhaustion hindering tissue regeneration and contributing to the progression of age related disorders. Here we discovered that ectopic expression of the pluripotent factor NANOG in senescent or progeroid myogenic progenitors reversed cellular aging and restored completely the ability to generate contractile force. To elicit its effects, NANOG enabled reactivation of the ROCK and Transforming Growth Factor (TGF)-β pathways-both of which were impaired in senescent cells-leading to ACTIN polymerization, MRTF-A translocation into the nucleus and serum response factor (SRF)-dependent myogenic gene expression. Collectively our data reveal that cellular senescence can be reversed and provide a novel strategy to regain the lost function of aged stem cells without reprogramming to the pluripotent state. Stem Cells 2017;35:207-221.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app