Add like
Add dislike
Add to saved papers

Can ventilator settings reduce the negative effects of endotracheal suctioning? Investigations in a mechanical lung model.

BMC Anesthesiology 2016 June 28
BACKGROUND: The insertion of suction devices through endotracheal tubes (ETTs) increases airway resistance and the subsequent suctioning may reduce airway pressures and facilitate atelectasis. The aim of this study was to investigate how airway pressures and tidal volumes change when different combinations of suction equipment and ETT sizes are used, and to what extent unfavorable effects can be ameliorated by choice of ventilator settings.

METHODS: A mechanical ventilator was connected to a lung model by ETTs of 9 mm, 8 mm or 7 mm internal diameter (ID) with a pressure transducer inserted distal to the ETT. The effects of suction procedures with bronchoscope and closed catheter systems were investigated during pressure controlled ventilation (PCV) and volume controlled ventilation (VCV). In each mode, the effects of changes in inspiration:expiration (I:E) ratio, trigger sensitivity and suction pressure were examined.

RESULTS: The variables that contributed most to negative model airway pressures and loss of tidal volume during suctioning were (in descending order); 1) Small-size ETTs (7-8 mm ID) combined with large diameter suction devices (14-16 Fr); 2) inverse I:E ratio ventilation (in VCV); 3) negative ventilator trigger sensitivity; and 4) strong suction pressure. The pressure changes observed distal to the ETTs were not identical to those detected by the ventilator.

CONCLUSIONS: Negative model airway pressure was induced by suctioning through small-size ETTs. The most extreme pressure and volume changes were ameliorated when conventional ventilator settings were used, such as PCV mode with short inspiration time and a trigger function sensitive to flow changes.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app