JOURNAL ARTICLE
RESEARCH SUPPORT, NON-U.S. GOV'T
Add like
Add dislike
Add to saved papers

Cerulein-induced pancreatic fibrosis is modulated by Smad7, the major negative regulator of transforming growth factor-β signaling.

Chronic pancreatitis is the most common disease of the exocrine pancreas, characterized by progressive inflammation, acinar atrophy and fibrosis. Transforming growth factor-β signaling (TGFβ) is the most potent fibrogenic cytokine known, and its increased expression is a common denominator for fibrosis in chronic pancreatitis. Smad7 is induced by the TGFβ superfamily members as an intracellular inhibitory feedback antagonizing TGFβ signaling. To investigate the functional role of Smad7 in vivo, we induced chronic pancreatitis by repeated administration of cerulein in mice that are deficient in exon-I of Smad7. The response to chronic pancreatitis induction was significantly more severe in Smad7 mutant mice as indicated by a stronger accumulation of extracellular matrix, increased levels of inflammatory cells and an elevated number of mesenchymal cells/myofibroblasts in Smad7 mutant pancreata. Taken together, we conclude that lack of a functional Smad7 gene results in more severe damage in chronic pancreatitis. Therefore, Smad7 could be envisaged as a promising target in antifibrotic therapy of the pancreas.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app