Journal Article
Research Support, N.I.H., Extramural
Research Support, Non-U.S. Gov't
Review
Add like
Add dislike
Add to saved papers

From Bench to Bedside and Back Again: A Personal Journey with Dexmedetomidine.

Anesthesiology 2016 September
Dexmedetomidine Diminishes Halothane Anesthetic Requirements in Rats Through a Postsynaptic Alpha 2 Adrenergic Receptor. By Segal IS, Vickery RG, Walton JK, Doze VA, and Maze M. ANESTHESIOLOGY 1988; 125:590-4. Abstract reprinted with permission.The effect of 4(5)-[1-(2,3-dimethylphenyl)ethyl]imidazole (medetomidine), the α2 adrenergic agonist, on anesthetic requirements was investigated in rats anesthetized with halothane. Halothane MAC was determined before and after either dexmedetomidine (D-enantiomer) or levomedetomidine (L-enantiomer) 10, 30, and 100 μg/kg, or vehicle intraperitoneally. There was a dose-dependent increase in MAC with the D-, but not the L-, stereoisomer. At the highest dose of dexmedetomidine (100 μg/kg), halothane could be discontinued for up to 30 min with no response to tail clamping. To determine whether α2 adrenoreceptors mediated this effect of dexmedetomidine on MAC, cohorts of rats were pretreated with idazoxan, 10 mg/kg intraperitoneally, a highly selective α2 antagonist. This completely prevented the reduction of MAC caused by dexmedetomidine. To determine whether the reduction of MAC caused by dexmedetomidine was mediated in part through either opiate or adenosine receptors, groups of rats were pretreated with either naltrexone, 5 mg/kg intraperitoneally, an opiate antagonist, or 8-phenyltheophylline, 2.5 mg/kg intraperitoneally, an A1 adenosine antagonist. These two pretreatments did not alter the reduction of MAC by dexmedetomidine. To determine whether postsynaptic mechanisms mediate the anesthetic effect of dexmedetomidine, rats were depleted of central catecholamine stores with either n-(2-chloroethyl)-n-ethyl-2-bromobenzylamine or reserpine and α-methyl-para-tyrosine, and MAC was determined before and after each dose of dexmedetomidine. While the catecholamine-depleted rats had a lower basal MAC than the vehicle controls, there was still a profound reduction in halothane MAC after administration of dexmedetomidine. The reduction of MAC by dexmedetomidine was blocked with idazoxan in the catecholamine-depleted rats. These data indicate that the reduction of MAC caused by dexmedetomidine is mediated through α2 adrenoreceptors with no apparent involvement of either opiate or A1 adenosine receptors. Data from catecholamine-depleted rats suggest that the mediating mechanism must involve site(s) other than or in addition to the presynaptic α2 adrenergic receptors on noradrenergic neurons. The authors conclude that central postsynaptic α2 adrenergic receptors mediate a significant part of the reduction of anesthetic requirements caused by dexmedetomidine.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app