Add like
Add dislike
Add to saved papers

Regulation of insulin-like growth factor 1 receptor signaling by microRNA-4458 in the development of lumbar disc degeneration.

A potential role of Insulin-like growth factor 1 (IGF1) receptor/phosphatidylinositol-3 kinase (PI3k)/Akt signaling in the initiation and progression of Lumbar disc degeneration (LDD) has been recently reported. However, the regulation of IGF1 receptor (IGF1R) at post-transcriptional levels in the development of LDD remains unknown. Here, we studied the effects of microRNA-4458 on the expression of IGF1R. We examined the IGF1R levels and microRNA-4458 (miR-4458) levels in the resected LDD discs, compared with the traumatized, non-LDD discs. We analyzed the binding of miR-4458 to the 3'-UTR of IGF1R mRNA and its effects on IGF1R translation by bioinformatics analysis and by luciferase-reporter assay, respectively. We modified miR-4458 levels in a human nucleus pulposus SV40 cell line (HNPSV), and examined the effects of miR-4458 on the expression of IGF1R and Akt, as well as their phosphorylation. We found that the levels of miR-4458 were significantly higher and the levels of IGF1R were significantly lower in LDD discs, compared with the control non-LDD discs. The levels of IGF1R inversely correlated with the levels of miR-4458 in LDD discs. Moreover, miR-4458 was found to bind to the 3'-UTR of IGF1R mRNA to prevent its translation. In miR-4458-modified HNPSV cells, we found that miR-4458 decreased both total IGF1R and phosphorylated IGF1R, resulting in deceases in phosphorylated Akt. Thus, these data suggest that miR-4458 may suppress PI3k/Akt signaling pathway through 3'-UTR-inhibtion of IGF1R mRNA to promote development of LDD.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app