Journal Article
Research Support, Non-U.S. Gov't
Review
Add like
Add dislike
Add to saved papers

Role of endoplasmic reticulum stress in endothelial dysfunction.

AIM: Endoplasmic reticulum (ER) stress is implicated in the pathogenesis of several human disorders, including cardiovascular disease (CVD). CVD recognizes endothelial dysfunction (ED) as its pathogenetic primum movens; interestingly a large body of evidence has identified the unchecked ER stress response as a main actor in vascular damage elicited by various cardio-metabolic risk factors. In the present Review, we summarize findings from experimental studies on the ER stress-related ED, focusing on the mechanisms underlying this association.

DATA SYNTHESIS: Different noxious agents, such as hyperhomocysteinemia, hyperlipidemia, hyperglycemia and chronic inflammation, induce ED promoting an amplified ER stress response as demonstrated by several studies in animal models, as well as in human primary and immortalized endothelial cells. ER stress represents therefore a key mediator of vascular damage, operating in a setting of increased inflammatory burden and oxidative stress, thus contributing to foster a vicious pathogenic cycle.

CONCLUSIONS: Experimental studies summarized in this Review strongly suggest that an unchecked ER stress response plays a central role in the pathogenesis of ED and, consequently, CVD. Counteracting ER stress may thus represent a promising, even if largely unexplored as-yet, therapeutic approach aimed to prevent vascular damage, slowing the progression from ED to cardiovascular events.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app