Add like
Add dislike
Add to saved papers

Biomechanics drive histological wall remodeling of neoaortic root: A mathematical model to study the expression levels of ki 67, metalloprotease, and apoptosis transition.

The pulmonary artery autograft (PA) is the ideal substitute for aortic valve disease in children and young adult. However, it is harnessed by the issue of long-term dilation and regurgitation, often requiring surgery. PA implanted in aortic position during the growth phase in children undergoes a process of mechanical remodeling. We previously developed a semiresorbable armored prosthesis able to mechanically sustain the neoaorta preventing dilation and to gradually integrate with the PA wall inducing a progressive arterial-like tissue positive remodeling. We also described the mechanisms of growth, remodeling and stress shielding of the reinforced PA through a mathematical model. We sought to demonstrate the biological counterpart and the potential molecular mechanisms underlying this histological and mechanical remodeling. A specific mathematical model was developed to describe mechanical behavior of the PA. Mallory trichrome red staining and immunohistochemistry for MMP-9 were performed to elucidate extracellular matrix remodeling phenomena. Apoptosis and cell proliferation were determined by TUNEL assay and immunohistochemistry for Ki67, respectively. An histological remodeling phenomenon sustained by increased level of MMP-9, augmented cell proliferation and reduced apoptosis in the reinforced PA was demonstrated. The mathematical model predicted the biomechanical behavior subtended by the histological changes of the PA in these settings. Changes in metalloproteinases (MMP-9), cell proliferation and apoptosis are the main actors in the remodeling process occurring after transposition of the PA into systemic regimens. Use of semiresorbable reinforcements might induce a positive remodeling of the PA in the context of Ross operation. © 2016 Wiley Periodicals, Inc. J Biomed Mater Res Part A: 104A: 2785-2793, 2016.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app