Journal Article
Research Support, N.I.H., Extramural
Research Support, Non-U.S. Gov't
Add like
Add dislike
Add to saved papers

Increased Modularity of Resting State Networks Supports Improved Narrative Production in Aphasia Recovery.

Brain Connectivity 2016 September
The networks that emerge in the analysis of resting state functional magnetic resonance imaging (rsfMRI) data are believed to reflect the intrinsic organization of the brain. One key property of such complex biological networks is modularity, a measure of community structure. This topological characteristic changes in neurological disease and recovery. Nineteen subjects with language disorders after stroke (aphasia) underwent neuroimaging and behavioral assessment at multiple time points before (baseline) and after an imitation-based therapy. Language was assessed with a narrative production task. Group independent component analysis was performed on the rsfMRI data to identify resting state networks (RSNs). For each participant and each rsfMRI acquisition, we constructed a graph comprising all RSNs. We assigned nodal community based on a region's RSN membership, calculated the modularity score, and then correlated changes in modularity and therapeutic gains on the narrative task. We repeated this comparison controlling for pretherapy performance and using a community structure not based on RSN membership. Increased RSN modularity was positively correlated with improvement on the narrative task immediately post-therapy. This finding remained significant when controlling for pretherapy performance. There were no significant findings for network modularity and behavior when nodal community was assigned without consideration of RSN membership. We interpret these findings as support for the adaptive role of network segregation in behavioral improvement in aphasia therapy. This has important clinical implications for the targeting of noninvasive brain stimulation in poststroke remediation and suggests potential for further insight into the processes underlying such changes through computational modeling.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app