Journal Article
Research Support, Non-U.S. Gov't
Add like
Add dislike
Add to saved papers

Hydrogen peroxide modulates neuronal excitability and membrane properties in ventral horn neurons of the rat spinal cord.

Neuroscience 2016 September 8
Hydrogen peroxide (H2O2), a reactive oxygen species, is an important signaling molecule for synaptic and neuronal activity in the central nervous system; it is produced excessively in brain ischemia and spinal cord injury. Although H2O2-mediated modulations of synaptic transmission have been reported in ventral horn (VH) neurons of the rat spinal cord, the effects of H2O2 on neuronal excitability and membrane properties remain poorly understood. Accordingly, the present study investigated such effects using a whole-cell patch-clamp technique. The bath-application of H2O2 decreased neuronal excitability accompanied by decreased input resistance, firing frequency, and action potential amplitude and by increased rheobase. These H2O2-mediated changes were induced by activation of extrasynaptic, but not synaptic, GABAA receptors. Indeed, GABAergic tonic currents were enhanced by H2O2. On the other hand, the amplitude of medium and slow afterhyperpolarization (mAHP and sAHP), which plays important roles in controlling neuronal excitability and is mediated by small-conductance calcium-activated potassium (SK) channels, was significantly decreased by H2O2. When extrasynaptic GABAA receptors were completely blocked, these decreases of mAHP and sAHP persisted, and H2O2 increased excitability, suggesting that H2O2 per se might have the potential to increase neuronal excitability via decreased SK channel conductance. These findings indicate that activating extrasynaptic GABAA receptors or SK channels may attenuate acute neuronal damage caused by H2O2-induced hyperexcitability and therefore represent a novel therapeutic target for the prevention and treatment of H2O2-induced motor neuron disorders.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app