Journal Article
Review
Add like
Add dislike
Add to saved papers

Basic concepts and practical equations on osmolality: Biochemical approach.

The terms osmotic pressure, osmotic coefficient, osmole, osmolarity, osmolality, effective osmolality and delta osmolality are formally defined. Osmole is unit of the amount of substance, one mole of nonionized impermeant solute is one osmole. Assuming an ideal solution, osmotic pressure (π) in mmHg is 19.3 times the osmolarity. Osmolarity is defined as the number of milliosmoles of the solutes per liter of solution. Suitable equations are presented for the rapid calculation of the osmolarity of different solutions. The concentrations of electrolytes are expressed by mEq/L that is, equal to their osmolarity as mOsm/L. If the solute concentration (C) is expressed as mg/L, mg/dL and g%, osmolarity is calculated as: C.n' /MW, C.n' (10)/MW and C.n' (10(4))/MW respectively. Osmolality is milliosmoles of solutes per one kilogram (or liter) of water of solution (plasma) and is calculated by osmolarity divided to plasma water. The osmolal concentration is corrected to osmolal activity by using the osmotic coefficient, φ. The salts of sodium (choloride and bicarbonate) and nonelectrolyte glucose and urea are the major five osmoles of plasma. The equation: Posm =2 [Na(+)]+glucose (mg/dL)/18+BUN (mg/dL)//2.8 is also the simplest and best formula to calculate plasma osmolality. The concentration of only effective osmoles evaluates effective osmolality or tonicity as: Eosm =2 [Na(+)]+glucose/18. The normal range of plasma tonicity is 275-295mOsm/kg of water. The difference between the measured and calculated osmolality is called osmolal gap. It is recommended to withdraw the formula of Dorwart-Chalmers from the textbooks and autoanalyzers and to use the simplest equation of Worthley et al. as the best equation for calculating serum osmolality. Furthermore the normal ranges of osmolal gap also must be corrected to 0±2mOsm/L.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app