JOURNAL ARTICLE
RANDOMIZED CONTROLLED TRIAL
Add like
Add dislike
Add to saved papers

Efficacy of Sensory Transcutaneous Electrical Nerve Stimulation on Perceived Pain and Gait Patterns in Individuals With Experimental Knee Pain.

OBJECTIVES: To examine the effect of experimental knee pain on perceived knee pain and gait patterns and to examine the efficacy of transcutaneous electrical nerve stimulation (TENS) on perceived knee pain and pain-induced knee gait mechanics.

DESIGN: Crossover trial.

SETTING: Biomechanics laboratory.

PARTICIPANTS: Recreationally active, individuals without musculoskeletal pain aged 18 to 35 years (N=30).

INTERVENTIONS: Thirty able-bodied individuals were assigned to either a TENS (n=15) or a placebo (n=15) group. All participants completed 3 experimental sessions in a counterbalanced order separated by 2 days: (1) hypertonic saline infusion (5% NaCl); (2) isotonic saline infusion (0.9% NaCl); and (3) control. Each group received sensory electrical stimulation or placebo treatment for 20 minutes, respectively.

MAIN OUTCOME MEASURES: Perceived pain was collected every 2 minutes using a 10-cm visual analog scale (VAS) for 50 minutes and analyzed using a mixed model analysis of covariance with repeated measures. Gait analyses were performed at baseline, infusion, and treatment. Sagittal and frontal knee angles and internal net joint torque across the entire stance were analyzed using a functional data analysis approach.

RESULTS: Hypertonic saline infusion increased perceived pain (4/10cm on a VAS; P<.05) and altered right knee angle (more flexion and less abduction; P<.05) and internal net joint torque (less extension and greater abduction; P<.05) across various stance phases. TENS treatment reduced perceived pain and improved right sagittal gait abnormalities as compared with placebo treatment (P<.05).

CONCLUSIONS: This pain model increases perceived pain and induces compensatory gait patterns in a way that indicates potential quadriceps weakness. However, TENS treatment effectively reduces perceived pain and restores pain-induced gait abnormalities in sagittal knee mechanics.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app