Add like
Add dislike
Add to saved papers

The high-fat diet induces myocardial fibrosis in the metabolically healthy obese minipigs-The role of ER stress and oxidative stress.

BACKGROUND: The cellular mechanisms of obesity-induced cardiomyopathy are multiple and not completely elucidated. The objective of this study was to differentiate two obesity-associated cardiomyopathy miniature pig models: one with the metabolic syndrome (MetS), and one with a metabolically healthy obesity (MHO). The cellular responses during the development of obesity-induced cardiomyopathy were investigated.

METHODS: Five-month-old Lee-Sung (MetS) and Lanyu (MHO) minipigs were made obese by feeding a high-fat diet (HFD) for 6 months.

RESULTS: Obese pigs exhibited a greater heart weight than control pigs. Interstitial and perivascular fibrosis developed in the myocardium of obese pigs. The HFD induced cardiac lipid accumulation and oxidative stress and also decreased the antioxidant defense in MetS pigs. This diet activated oxidative stress without changing cardiac antioxidant defense and lipid content in MHO pigs. The HFD upregulated the expression of Grp94, CHOP, caspase 12, p62, and LC3II, and increased the ratio of LC3II to LC3I in the left ventricle (LV) of MetS pigs. Compared to obese MetS pigs, less Grp94 and elevated CHOP expression was found in the obese MHO heart. The HFD did not change the ratio of LC3II to LC3I and p62 expression in obese MHO pigs. The obese MetS pigs had an extensive and greater inflammatory response in the plasma than the obese MHO pigs, which had a lesser and milder inflammation.

CONCLUSION: Oxidative stress and ER stress were involved in the progression of MHO-related cardiomyopathy. Inflammation, autophagy, ER stress, oxidative stress, and lipotoxicity participated in the pathological mechanism of MetS-related cardiomyopathy.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app