Add like
Add dislike
Add to saved papers

Relationship between aneurysm wall enhancement and conventional risk factors in patients with unruptured intracranial aneurysms: A black-blood MRI study.

BACKGROUND AND PURPOSE: Aneurysmal wall enhancement (AWE) has emerged as a new possible biomarker for depicting inflammation of the intracranial aneurysm (IA). However, the relationships of AWE with other risk factors are still unclear for unruptured IA. The purpose of this study was to investigate the association between AWE and other risk metrics.

METHODS: Forty-eight patients with unruptured saccular IAs diagnosed by digital subtraction angiography were recruited to undergo magnetic resonance (MR) black-blood imaging. AWE was evaluated using the pre- and post-contrast black-blood MR images. Univariate and multivariate logistic regression analysis was performed to investigate the association of AWE with other risk factors, including size, maximal neck width, parent vessel diameter, location, multiplicity, daughter sacs and other clinical factors. The prevalence of AWE in each ISUIA grade was reported and compared by Wilcoxon rank sum test.

RESULTS: In total, 61 aneurysms were detected in 48 patients. Aneurysm size was found to be an independent risk factor associated with AWE (OR 2.46 per mm increase, 95% CI 1.34-4.51; p = 0.004). Patient age was independently and inversely associated with AWE (OR 0.898 per year increase, 95% CI 0.812-0.994; p = 0.037). Higher prevalence of AWE was observed in larger aneurysms (12%, 71.4%, 100%, and 100% of ISUIA grade 1-4 IAs have AWE, respectively). Notably, 12% of small IAs (size <7 mm) exhibited AWE. The IAs with AWE had significant higher ISUIA grade than the IAs without (p < 0.001, Wilcoxon rank sum test).

CONCLUSIONS: The wall enhancement in contrast-enhanced black-blood MR images was independently associated with aneurysm size in unruptured IAs. However, some small unruptured aneurysms did exhibit wall enhancement, suggesting that AWE may provide additional aneurysm instability information to improve current size-based rupture risk evaluation metrics.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app