Add like
Add dislike
Add to saved papers

Molecular characteristics of circulating tumor cells resemble the liver metastasis more closely than the primary tumor in metastatic colorectal cancer.

Oncotarget 2016 September 14
BACKGROUND: CTCs are a promising alternative for metastatic tissue biopsies for use in precision medicine approaches. We investigated to what extent the molecular characteristics of circulating tumor cells (CTCs) resemble the liver metastasis and/or the primary tumor from patients with metastatic colorectal cancer (mCRC).

RESULTS: The CTC profiles were concordant with the liver metastasis in 17/23 patients (74%) and with the primary tumor in 13 patients (57%). The CTCs better resembled the liver metastasis in 13 patients (57%), and the primary tumor in five patients (22%). The strength of the correlations was not associated with clinical parameters. Nine genes (CDH1, CDH17, CDX1, CEACAM5, FABP1, FCGBP, IGFBP3, IGFBP4, and MAPT) displayed significant differential expressions, all of which were downregulated, in CTCs compared to the tissues in the 23 patients.

PATIENTS AND METHODS: Patients were retrospectively selected from a prospective study. Using the CellSearch System, CTCs were enumerated and isolated just prior to liver metastasectomy. A panel of 25 CTC-specific genes was measured by RT-qPCR in matching CTCs, primary tumors, and liver metastases. Spearman correlation coefficients were calculated and considered as continuous variables with r=1 representing absolute concordance and r=-1 representing absolute discordance. A cut-off of r>0.1 was applied in order to consider profiles to be concordant.

CONCLUSIONS: In the majority of the patients, CTCs reflected the molecular characteristics of metastatic cells better than the primary tumors. Genes involved in cell adhesion and epithelial-to-mesenchymal transition were downregulated in the CTCs. Our results support the use of CTC characterization as a liquid biopsy for precision medicine.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app