Journal Article
Research Support, Non-U.S. Gov't
Add like
Add dislike
Add to saved papers

Convergent Solid-Phase Synthesis of Macromolecular MUC1 Models Truly Mimicking Serum Glycoprotein Biomarkers of Interstitial Lung Diseases.

Synthetic macromolecular MUC1 glycopeptides have been used to unravel molecular mechanisms in antibody recognition of disease-specific epitopes. We have established a novel synthetic strategy for MUC1 tandem repeats having complex O-glycosylation states at each repeating unit based on convergent solid-phase fragment condensation under microwave irradiation. We have accomplished the synthesis of 77 amino acid MUC1 glycopeptides (MW = 12 759) having three major antigenic O-glycoforms [Tn, core 1 (T), and core 2 structures] at 10 designated positions out of 19 potential O-glycosylation sites. We demonstrate that the macromolecular MUC1 glycopeptide displaying the essential glycopeptidic neoepitope Pro-Asp-Thr(sialyl-T)-Arg-Pro-Ala-Pro at two different tandem repeats is an excellent serum MUC1 model showing ideal stoichiometric binding with anti-KL6/MUC1 antibody in the sandwich ELISA to quantify human serum KL6/MUC1 levels as a critical biomarker of interstitial lung diseases.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app