Journal Article
Research Support, Non-U.S. Gov't
Add like
Add dislike
Add to saved papers

CRMP4 regulates dendritic growth and maturation via the interaction with actin cytoskeleton in cultured hippocampal neurons.

CRMP family proteins (CRMPs) are critical for neurite outgrowth and maturation in the developing nervous system. However, the distinct roles of CRMP isoforms remain to be elucidated, especially in dendritic development. Here, we show that CRMP4 is sufficient and necessary for dendritic growth and maturation in cultured hippocampal neurons. Overexpression of CRMP4 promotes and genetic knockdown of CRMP4 inhibits the amount of dendritic tips, total dendritic length, spine density, and the frequency but not amplitude of miniature excitatory synaptic current. By GST-pulldown assay, we reveal that CRMP4 interacts with actin cytoskeleton by its C-terminal region, but not by N-terminal. Overexpression of actin-interacting region of CRMP4 promoted dendritic growth and maturation as CRMP4 wildtype. Taken together, these results suggest that CRMP4 is involved in dendritic development via the interaction with actin cytoskeleton in hippocampal neurons.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app