Add like
Add dislike
Add to saved papers

Selective interaction of PEGylated polyglutamic acid nanocapsules with cancer cells in a 3D model of a metastatic lymph node.

BACKGROUND: Metastases are the most common reason of cancer death in patients with solid tumors. Lymph nodes, once invaded by tumor cells, act as reservoirs before cancer cells spread to distant organs. To address the limited access of intravenously infused chemotherapeutics to the lymph nodes, we have developed PEGylated polyglutamic acid nanocapsules (PGA-PEG NCs), which have shown ability to reach and to accumulate in the lymphatic nodes and could therefore act as nanotransporters. Once in the lymphatics, the idea is that these nanocapsules would selectively interact with cancer cells, while avoiding non-specific interactions with immune cells and the appearance of subsequent immunotoxicity.

RESULTS: The potential of the PGA-PEG NCs, with a mean size of 100 nm and a negative zeta potential, to selectively reach metastatic cancer cells, has been explored in a novel 3D model that mimics an infiltrated lymph node. Our 3D model, a co-culture of cancer cells and lymphocytes, allows performing experiments under dynamic conditions that simulate the lymphatic flow. After perfusion of the nanocarriers, we observe a selective interaction with the tumor cells. Efficacy studies manifest the need to develop specific therapies addressed to treat metastatic cells that can be in a dormant state.

CONCLUSIONS: We provide evidence of the ability of PGA-PEG NCs to selectively interact with the tumor cells in presence of lymphocytes, highlighting their potential in cancer therapeutics. We also state the importance of designing precise in vitro models that allow performing mechanistic assays, to efficiently develop and evaluate specific therapies to confront the formation of metastasis.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app