Add like
Add dislike
Add to saved papers

Capillary Transit Time Heterogeneity Is Associated with Modified Rankin Scale Score at Discharge in Patients with Bilateral High Grade Internal Carotid Artery Stenosis.

BACKGROUND AND PURPOSE: Perfusion weighted imaging (PWI) is inherently unreliable in patients with severe perfusion abnormalities. We compared the diagnostic accuracy of a novel index of microvascular flow-patterns, so-called capillary transit time heterogeneity (CTH) to that of the commonly used delay parameter Tmax in patients with bilateral high grade internal carotid artery stenosis (ICAS).

METHODS: Consecutive patients with bilateral ICAS ≥ 70%NASCET who underwent PWI were retrospectively examined. Maps of CTH and Tmax were analyzed with a volumetric approach using several thresholds. Predictors of favorable outcome (modified Rankin scale at discharge 0-2) were identified using univariate and receiver operating characteristic (ROC) curve analysis.

RESULTS: Eighteen patients were included. CTH ≥ 30s differentiated best between patients with favorable and unfavorable outcome when both hemispheres were taken into account (sensitivity 83%, specificity 73%, area under the curve [AUC] 0.833 [confidence interval (CI) 0.635; 1.000]; p = 0.027). The best discrimination using Tmax was achieved with a threshold of ≥ 4s (sensitivity 83%, specificity 64%, AUC 0.803 [CI 0.585;1.000]; p = 0.044). The highest AUC was found for left sided volume with CTH ≥ 15s (sensitivity 83%, specificity 91%, AUC 0.924 [CI 0.791;1.000]; p = 0.005).

CONCLUSION: The study suggests that CTH is superior to Tmax in discriminating ICAS patients with favorable from non-favorable outcome. This finding may reflect the simultaneous involvement of large vessels and microvessels in ICAS and underscore the need to diagnose and manage both aspects of the disease.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app