Add like
Add dislike
Add to saved papers

Placental restriction in multi-fetal pregnancies increases spontaneous ambulatory activity during daylight hours in young adult female sheep.

Intrauterine growth restriction (IUGR) has adverse effects on metabolic health and early life, whereas physical activity is protective against later development of metabolic disease. Relationships between birth weight and physical activity in humans, and effects of IUGR on voluntary activity in rodents, are mixed and few studies have measured physical activity in a free-ranging environment. We hypothesized that induced restriction of placental growth and function (PR) in sheep would decrease spontaneous ambulatory activity (SAA) in free-ranging adolescent and young adult progeny from multi-fetal pregnancies. To test this hypothesis, we used Global Positioning System watches to continuously record SAA between 1800 and 1200 h the following day, twice during a 16-day recording period, in progeny of control (CON, n=5 males, 9 females) and PR pregnancies (n=9 males, 10 females) as adolescents (30 weeks) and as young adults (43 weeks). PR reduced size at birth overall, but not in survivors included in SAA studies. In adolescents, SAA did not differ between treatments and females were more active than males overall and during the day (each P<0.001). In adults, daytime SAA was greater in PR than CON females (P=0.020), with a similar trend in males (P=0.053) and was greater in females than males (P=0.016). Adult SAA was negatively correlated with birth weight in females only. Contrary to our hypothesis, restricted placental function and small size at birth did not reduce progeny SAA. The mechanisms for increased daytime SAA in adult female PR and low birth weight sheep require further investigation.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app