Add like
Add dislike
Add to saved papers

Comparative Photocatalytic Degradation of Monoazo and Diazo Dyes Under Simulated Visible Light Using Fe3+/C/S doped-TiO2 Nanoparticles.

This research work delved into the photocatalytic degradation of monoazo dye (methyl orange) and diazo dye (congo red) in aqueous solution using Fe3+/C/S-doped TiO2 nanocomposites. The nanocomposites were synthesised through sol-gel method and characterized using XRD, FTIR, SEM, TEM, EDX, BET and UV-Vis. Photocatalytic degradation of the dyes was monitored under simulated visible light using pristine TiO2, C/S/doped-TiO2 and Fe3+/C/S doped-TiO2 with varying concentrations of Fe3+. The influence of catalyst doping, solution pH, and light intensity were also examined. Doping TiO2 with Fe3+/C/S caused reduction in its band gap value with the resultant improvement in its visible light activity. The photocatalytic efficiency of the catalysts is given as follows: TiO2 < C/S/TiO2 < Fe3+/C/S-TiO2 with Fe3+/C/S-TiO2 (0.3% Fe3+) as the best performing photocatalyst. The monoazo dye experienced higher degradation efficiency than the diazo dye. Degradation of the azo dyes was observed to decrease with increasing pH from 2 to 12. Increased visible light intensity enhanced the photodegradation efficiency of the dye. Dye decolourization was observed to be faster than its mineralization.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app