Add like
Add dislike
Add to saved papers

Diagnostic Value of Fractal Analysis for the Differentiation of Brain Tumors Using 3-Tesla Magnetic Resonance Susceptibility-Weighted Imaging.

Neurosurgery 2016 December
BACKGROUND: Susceptibility-weighted imaging (SWI) of brain tumors provides information about neoplastic vasculature and intratumoral micro- and macrobleedings. Low- and high-grade gliomas can be distinguished by SWI due to their different vascular characteristics. Fractal analysis allows for quantification of these radiological differences by a computer-based morphological assessment of SWI patterns.

OBJECTIVE: To show the feasibility of SWI analysis on 3-T magnetic resonance imaging to distinguish different kinds of brain tumors.

METHODS: Seventy-eight patients affected by brain tumors of different histopathology (low- and high-grade gliomas, metastases, meningiomas, lymphomas) were included. All patients underwent preoperative 3-T magnetic resonance imaging including SWI, on which the lesions were contoured. The images underwent automated computation, extracting 2 quantitative parameters: the volume fraction of SWI signals within the tumors (signal ratio) and the morphological self-similar features (fractal dimension [FD]). The results were then correlated with each histopathological type of tumor.

RESULTS: Signal ratio and FD were able to differentiate low-grade gliomas from grade III and IV gliomas, metastases, and meningiomas (P < .05). FD was statistically different between lymphomas and high-grade gliomas (P < .05). A receiver-operating characteristic analysis showed that the optimal cutoff value for differentiating low- from high-grade gliomas was 1.75 for FD (sensitivity, 81%; specificity, 89%) and 0.03 for signal ratio (sensitivity, 80%; specificity, 86%).

CONCLUSION: FD of SWI on 3-T magnetic resonance imaging is a novel image biomarker for glioma grading and brain tumor characterization. Computational models offer promising results that may improve diagnosis and open perspectives in the radiological assessment of brain tumors.

ABBREVIATIONS: FD, fractal dimensionSR, signal ratioSWI, susceptibility-weighted imaging.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app