Add like
Add dislike
Add to saved papers

Effects of lung cancer cell-associated B7-H1 on T-cell proliferation in vitro and in vivo.

B7 homolog 1 (B7-H1) is the most potent immunoinhibitory molecule in the B7 family. In this study, we examined the effects of tumor-associated B7-H1 on T-cell proliferation in lung cancer. The expression of B7-H1 in human adenocarcinoma A549 and mouse Lewis lung carcinoma (LLC) cells were examined by flow cytometry. To assess the in vitro effect of tumor-associated B7-H1 on T-cell proliferation, we isolated T cells from peripheral blood mononuclear cells (PBMCs) of healthy individuals, labeled them with carboxyfluorescein succinimidyl ester, and co-cultured them with A549 cells in the absence or presence of anti-B7-H1 antibody. For in vivo analysis, LLC cells were subcutaneously injected into mice treated or not with anti-B7-H1 antibody. T-cell proliferation in both in vitro and in vivo assays was analyzed by flow cytometry. In vitro, co-culturing T cells with A549 cells significantly inhibited the proliferation of the former compared with the proliferation of T cells alone (P<0.01), and the addition of B7-H1 blocking antibody dramatically reversed the inhibition of T-cell proliferation by A549 cells. Similarly, in mice bearing LLC-derived xenograft tumors, in vivo administration of anti-B7-H1 antibody significantly increased the total number of spleen and tumor T cells compared to levels in control mice that did not receive anti-B7-H1 antibody. Functionally, in vivo administration of anti-B7-H1 antibody markedly reduced tumor growth. Tumor-associated B7-H1 may facilitate immune evasion by inhibiting T-cell proliferation. Targeting of this mechanism offers a promising therapy for cancer immunotherapy.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app