Journal Article
Research Support, N.I.H., Extramural
Research Support, Non-U.S. Gov't
Add like
Add dislike
Add to saved papers

Movement-related dynamics of cortical oscillations in Parkinson's disease and essential tremor.

Brain 2016 August
Recent electrocorticography data have demonstrated excessive coupling of beta-phase to gamma-amplitude in primary motor cortex and that deep brain stimulation facilitates motor improvement by decreasing baseline phase-amplitude coupling. However, both the dynamic modulation of phase-amplitude coupling during movement and the general cortical neurophysiology of other movement disorders, such as essential tremor, are relatively unexplored. To clarify the relationship of these interactions in cortical oscillatory activity to movement and disease state, we recorded local field potentials from hand sensorimotor cortex using subdural electrocorticography during a visually cued, incentivized handgrip task in subjects with Parkinson's disease (n = 11), with essential tremor (n = 9) and without a movement disorder (n = 6). We demonstrate that abnormal coupling of the phase of low frequency oscillations to the amplitude of gamma oscillations is not specific to Parkinson's disease, but also occurs in essential tremor, most prominently for the coupling of alpha to gamma oscillations. Movement kinematics were not significantly different between these groups, allowing us to show for the first time that robust alpha and beta desynchronization is a shared feature of sensorimotor cortical activity in Parkinson's disease and essential tremor, with the greatest high-beta desynchronization occurring in Parkinson's disease and the greatest alpha desynchronization occurring in essential tremor. We also show that the spatial extent of cortical phase-amplitude decoupling during movement is much greater in subjects with Parkinson's disease and essential tremor than in subjects without a movement disorder. These findings suggest that subjects with Parkinson's disease and essential tremor can produce movements that are kinematically similar to those of subjects without a movement disorder by reducing excess sensorimotor cortical phase-amplitude coupling that is characteristic of these diseases.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app