Add like
Add dislike
Add to saved papers

Cytotoxicity assessment of lipid-based self-emulsifying drug delivery system with Caco-2 cell model: Cremophor EL as the surfactant.

PURPOSE: Caco-2 cells are used extensively for in vitro prediction of intestinal drug absorption. However, toxicity of excipients and formulations used can artificially increase drug permeation by damaging cell monolayers, thus providing misleading results. The present study aimed to investigate cytotoxicity of common lipid-based excipients and formulations on Caco-2 cells.

METHODS: Medium-chain monoglycerides alone or in mixture with the surfactant Cremophor EL, with and without a medium-chain triglyceride, were prepared and incubated with Caco-2 cells from a series of culture stages with varying maturity. Cell viability was evaluated and cell membrane integrity assessed.

RESULTS: Cytotoxicity of lipid-based formulations was influenced by the maturity of Caco-2 cells and formulation composition. One-day culture was most sensitive to lipids. When cultured for 5days, viability of Caco-2 cells was significantly improved. The 21-day Caco-2 monolayers maintained the highest survival rate. Microemulsion formulations exhibited significantly less cytotoxicity than neat lipids or surfactant at all stages of cell maturity, and microemulsions containing 1:1 mixtures of monoglyceride and triglyceride appeared to be best tolerated among all the formulations tested. Mechanistically, the observed cytotoxicity was partially due to lipid-induced rupture of cell membrane.

CONCLUSIONS: Microemulsions of lipid-surfactant mixtures have less cytotoxicity than lipid alone. Maturity of Caco-2 cells renders significant resistance to cytotoxicity, and monolayers with 21-day maturity are more relevant to in vivo conditions and appear to be a more accurate in vitro model for cytotoxicity assessment.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app