Add like
Add dislike
Add to saved papers

Interventional MR Imaging for Deep-Brain Stimulation Electrode Placement.

Radiology 2016 December
Purpose To investigate the safety and targeting errors of deep-brain stimulation (DBS) electrodes placed under interventional magnetic resonance (MR) imaging, which allows near real-time anatomic placement without physiologic mapping. Materials and Methods Retrospectively evaluated were 10 consecutive patients (five women, five men) with a mean age of 59.9 years (age range, 17-79 years). These patients underwent interventional MR imaging-guided DBS placement for movement disorders from September 2013 to August 2014 for placement of 19 DBS electrodes in cases where traditional frame-based surgery may be challenging because of the following: dystonia resulting in difficulty in placing the patients in frame, patient's inability or unwillingness to tolerate awake surgery, or anatomic anomaly or variant that could increase the risk of bleeding from microelectrode mapping. Outcomes measured included perioperative hemorrhage, death, and stroke, and electrode functionality assessed at 2 weeks after the operation. In addition, the mean radial error and mean trajectory error were calculated. Results No intraoperative neurologic complications (n = 10 [95% confidence interval: 0%, 31%]) were observed. One patient developed aspiration pneumonia in the postoperative period. Mean radial error was 0.7 mm ± 0.4 (standard deviation) and mean trajectory error was 0.5 mm ± 0.4. All leads delivered clinically effective stimulation. Conclusion Interventional MR imaging-guided DBS electrode placement may be a safe and effective alternative to conventional frame-based surgery in well-selected patients. © RSNA, 2016.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app